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Abstract. The music visualization algorithm described in this study allows users to construct piano 
audio files using imported image files. This paper contributes to previous studies and designs of 
sonification by highlighting the effectiveness of utilizing onset detection in creating intuitive sonic 
changes. The audio-visual correspondences employed in this study could be expanded to many 
other syntheses and sample manipulation techniques. Translating visual information into sonic 
changes could yield many creative applications in music production, as it offers musicians a 
simultaneously optical and auditory production experience. This approach to audio manipulation also 
increases the unpredictability of the sound output, which could be appealing to experimental 
musicians seeking to control sounds with the visual structure of artworks that they enjoy, as opposed 
to precise parameters. It is looking forward to seeing creative implementations of the techniques in 
audio-visual artworks, music production tools, and interactive multimedia systems. These results 
shed light on guiding further exploration of AI composing. 
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1. Introduction 

Coined by Roger Fry in 1912, “visual music” was a term that originally describes the pictorial 
translation of music [1]. Since then, more than a century of technological advancement and artistic 
exploration has bestowed new meanings to the concept of visual music. Nowadays, visual music 
presents itself in films, computer graphics, and countless other media systems. In addition, musical 
information is not only transformed into visuals but also vice-versa [2]. 

The approaches explored in the research of visual music are very expansive, one prominent interest 
was in the correlation between colors and sound characteristics. For instance, Isaac Newton, Louis 
Bertrand Castel, and many others maintained that there is a real analogy between elementary colors 
and the notes of the musical scale. Newton, e.g., named seven supposedly primary colors of the 
spectrum–red, orange, yellow, green, blue, indigo, and violet–one to parallel each note on the musical 
scale. While Castel incorporated his own scheme into his color organ: blue for do, green for re, yellow 
for mi, red for sol, etc., seen a sketch in Fig. 1 [3]. The color organ that Castel has pioneered is one 
of the earliest instruments designed to visualize music. Musicians compose with organs that have 
colors mapped to sound according to their pitch, amplitude, and timbre. As the performer plays the 
keyboard, corresponding color values will be displayed on a screen [4]. 

As one of the earliest forms of music visualization, the color organ has slowly embodied itself to 
become a tradition in representing music in the visual medium. The concept has been implemented 
through various mediums such as the ocular harpsichord of Johann Gottlob Krüger in 1743; the pipe 
organs of Bainbridge Bishop in 1877; the Lumigraph of Oskar Fischinger in 1940s, and the Virtual 
Reality Color Organ of Jack Ox in 2000. 

With the current proliferation of generative AI Artworks, it is intuitive to marry Artificial 
Intelligence with the concept of color organs to create new forms of music visualizations. Past 
attempts at making audiovisual content using deep learning include “Deep Music Visualizer” in 2019 
and “Lucid Sonic Dreams” in 2021. The former algorithm was developed by Matt Siegelman, which 
syncs pitch, volume, and tempo features of the audio input with the generated class and noise vector 
fed into the BigGAN model. The latter package, created by Mikael Alafriz, took a similar approach. 
The algorithm allows users to generate GAN-based music visualizations by extracting amplitude and 
pitch information from the input audio and manipulating the input vector according to amplitude 
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changes and feeding StyleGAN2 a vector containing 512 numbers, which determines the output 
image [5]. Visually “Lucid Sonic Dreams” is more effective at establishing audio to visual 
correspondences. This is primarily due to the separation of percussive and harmonic elements of the 
input audio. By mapping the amplitude of percussive audio elements to a “pulse” parameter, the 
generated GAN images could pulsate according to the rhythm of the music. One commonality 
between the two projects is their usage of audio features as drivers of noise and class vectors. This 
approach shall serve as the foundation for the AI Color Organ. 

Infusing the Color Organ concept would allow us to explore the correlations between sonic 
features and GAN-based visuals in meaningful ways. As mentioned earlier, previous deep music 
visualizers focused on using amplitude and pitch as driving data. However, there are many more 
feature extraction techniques that remained unexplored in these implementations. The algorithm 
discussed in this paper explored three more techniques, onset detection, tempo detection, and RMS. 
Moreover, the usage of pitch information in previous implementations only have a loose connection 
with the generated visuals. This is because in both “De chromagram ep Music Visualizer” and “Lucid 
Sonic Dreams”, pitch information is translated into chromagrams, with the 12 tones mapped to 12 
random classes of the GAN. The resulting effect is seemingly random changes in class output from a 
set style. In this paper, the chromagram would be bestowed more meaningful correlations with the 
generated visuals by mapping each note to a corresponding color output according to Newton’s color 
scale. The rest part of the paper is organized as follows. Section 2 will describe the audio analysis 
and video generation components of the algorithm. Subsequently, Section 3 will demonstrate the 
results and discussion based on the algorithms. Afterwards, the Sec. 4 will present the limitations of 
the current study as well as future prospects accordingly. Eventually, a brief summary will be given 
in Sec. 5. 

 
Fig. 1 Newton’s color scale 

2. Algorithms  

To mimic the color organ created by Castel, the AI model has to be able to first, evolve according 
to the playing of each new note. Second, generate colored images according to newton’s color scale. 
The full implementation of the AI color organ concept consisted of two parts, the audio feature 
extraction, and the video generation process. 

2.1 Audio Feature Extraction 

The primary tool for audio analysis that was utilized by the algorithm is the librosa python package. 
In this case, three types of audio information were retrieved: Note onset, chromagram, and RMS. 
Note onset is detected using the librosa.onset.onset_detect function. By specifying the audio time 
series, sampling rate, and hop length, which returns an array detailing the occurrence of each new 
note in milliseconds. The program utilizes librosa’s implementation of the superflux onset algorithm 
which effectively filters out false positives induced by vibratos. The resulting array obtained through 
this process is then converted from milliseconds into corresponding frame counts. At frames where 
onsets are detected, noise vectors would be manipulated, creating a morphing effect that transforms 
the GAN-generated images in latent space [7]. An example of the onset detection is given in Fig. 2. 
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Fig. 2 Onset detection on the piano composition. 

As for the color of the images generated, the primary goal as stated at the beginning is for the color 
of the generated imagery to correspond to the pitch of the note input. This meant that the algorithm 
would need to first identify the pitch of each new note. This task is achieved by feeding audio into 
the librosa.feature.chroma_cqt function [7]. By passing in the audio time series and sample rate, a 2D 
array representing the chromagram is thus created as depicted in Fig. 3. 

 
Fig. 3 Visualization of the resulting chromagram 

One issue that comes with this approach is the polyphonic nature of piano pieces. The presence of 
chords and melodies raises the issue of prioritizing which color to display. The approach that this 
study took was to first apply a low-pass filter to diminish the chord voices (generally lower pitched) 
and enhance the melody (generally higher pitched). The high-passed audio signal is then converted 
to a chromagram according to the aforementioned process. For each frame, the most maximum pitch 
value is selected, thus determining the color of the final image. 

The RMS values serve as a representation of the “energy” of the input audio as illsutratetd in Fig. 
4. Since a piano piece is usually playing in expressive velocities, RMS data gives a useful 
representation of the sound amplitude. The value is extracted using librosa.feature.rms with long 
frame size. In this way, the change in amplitude is “smooth out”, which is useful for creating gradual 
visual changes [7]. 
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Fig. 4 RMS data for the song “Duke Ellington”. 

 
Fig. 5 The AI Color Organ algorithm. 
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2.2 Video-Generation & Algorithm Logic 

First, input vectors are initialized and interpolated. This serves as the video’s “base motion”. The 
parameter speed_fpm controls how fast this motion goes, where “FPM” stands for “Frames Per 
Minute”. Essentially, the number of vectors initialized per minute. For each succeeding frame, the 
onset variable controls the interpolation of each successive visual, chroma determines the color 
histogram that is fed into HistoGAN, and RMS parameters control the color contrast of the video 
output.  

HistoGAN offers a histogram-based method for controlling the color of GAN-generated images. 
In comparison to traditional color transfer methods [8]. Note data interpreted by the chromagram is 
translated to Newton’s color scale. Color histograms correspond to each of the colors within the scale. 
The ReHistoGAN is added to the program as a part of post-processing. Holistically, the logic of the 
algorithm is presented in Fig. 5. 

3. Results & Discussion 

The resulting algorithm learns to map color information, represented by the target color histogram, 
to an output image’s colors with a realism consideration in the recolored image. Maintaining realistic 
results is achieved by learning proper matching between the target colors and the input image’s 
semantic objects. 

In combination with audio analysis, the program allows real-time composition and performance of 
audio-visual parameters from a single interface. The interface also enables the user to redefine the 
macro-level audio-visual effect associations described in this paper in a modular fashion. It allows 
the user to define their own audiovisual relationships that share either similar or dissimilar 
characteristics. I have suggested ways in which these mappings may be related in a way that make 
artistic sense as the qualities of an auditory or visual process may share similar ‘perceptual qualities’. 
The instrument allows for the manipulation of visual grains via granular synthesis, a technique 
previously found exclusively in audio synthesis software. 

4. Limitations & Prospect 

Nevertheless, it should be noted that this study has some shortcomings and drawbacks. One 
limitation of the artworks generated using an onset detection approach is in processing fast-tempo 
music. Since each note onset occurs within a short interval, StyleGAN 2 has to interpolate noise 
vectors between two images rapidly, thus causing visual clutter. Thus, it is advisable to use piano 
pieces that are under 150bpm. Secondly, the algorithm employed an emphasis filter as a means of 
isolating the melody from the chords of a piano piece. This assumes that chord progressions tend to 
be of lower frequencies. As such, piano pieces that plays at higher octaves the convolute the onset 
detection.  

In the future, it would be fruitful to explore the correspondence between higher-level features. As 
Dannenberg pointed out, visual music programs have the tendency to “draw connections between 
music and image using superficial parameters such as instantaneous amplitude or pitch” [9]. 
Techniques such as emotion detection and segmentation by contrast could be explored [10, 11]. These 
methods could help extract deep, emotional, structural, and hidden information from audio. 

5. Conclusion 

In conclusion, an implementation of the GAN-based Color Organ is proposed. Specifically, the 
audio-visual correspondences between note onset and GAN-generated image is explored. In addition, 
the application, the application HistoGAN allows the algorithm to establish connections between 
pitch and color. By mapping the chromagram to Newton’s color scale, this project successfully 
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intertwined the tradition of Color Organs within a GAN-based music visualizer. Overall, these results 
offer a guideline for constructing music according to visualization based on AI techniques. 
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